

LECTURE 1

INTELLIGENT SYSTEMS (CSE-303-F)

Section A

UNINFORMED AND INFORMED SEARCH

Outline

 Motivation

 Technical Solution
 Uninformed Search

 Depth-First Search

 Breadth-First Search

 Informed Search
 Best-First Search

 Hill Climbing

 A*

 Illustration by a Larger Example

 Extensions

 Summary

Motivation

 One of the major goals of AI is to help humans in solving complex tasks

 How can I fill my container with pallets?

 Which is the shortest way from Milan to Innsbruck?

 Which is the fastest way from Milan to Innsbruck?

 How can I optimize the load of my freight to maximize my revenue?

 How can I solve my Sudoku game?

 What is the sequence of actions I should apply to win a game?

 Sometimes finding a solution is not enough, you want the optimal solution
according to some “cost” criteria

 All the example presented above involve looking for a plan

 A plan that can be defined as the set of operations to be performed of an
initial state, to reach a final state that is considered the goal state

 Thus we need efficient techniques to search for paths, or sequences of
actions, that can enable us to reach the goal state, i.e. to find a plan

 Such techniques are commonly called Search Methods

Examples of Problems: Towers of

Hanoi

 3 pegs A, B, C

 3 discs represented as natural
numbers (1, 2, 3) which
correspond to the size of the
discs

 The three discs can be
arbitrarily distributed over the
three pegs, such that the
following constraint holds:

di is on top of dj → di < dj

 Initial status: ((123)()())

 Goal status: (()()(123))

3

2

1

A B C

Operators:

Move disk to peg

Applying: Move 1 to C (1 → C)

to the initial state ((123)()())

a new state is reached

((23)()(1))

Cycles may appear in the

solution!

Examples of Problems:

Blocksworld

 Objects: blocks

 Attributes (1-ary
relations): cleartop(x),
ontable(x)

 Relations: on(x,y)

 Operators: puttable(x)
where x must be
cleartop; put(x,y), where
x and y must be
cleartop

E

A

B C

D

Goal State

E A B C

D

Initial State

• Initial state:
– ontable(E), cleartop(E)

– ontable(A), cleartop(A)

– ontable(B), cleartop(B)

– ontable(C)

– on(D,C), cleartop (D)

• Applying the move put(E,A):
– on(E,A), cleartop(E)

– ontable(A)

– ontable(B), cleartop(B)

– ontable(C)

– on(D,C), cleartop (D)

Search Methods

TECHNICAL SOLUTION

Search Space Representation

 Representing the search
space is the first step to
enable the problem resolution

 Search space is mostly
represented through graphs

 A graph is a finite set of
nodes that are connected by
arcs

 A loop may exist in a graph,
where an arc lead back to the
original node

 In general, such a graph is
not explicitly given

 Search space is constructed
during search

Loop
Node

Arc

Search Space Representation

 A graph is undirected if
arcs do not imply a
direction, direct otherwise

 A graph is connected if
every pair of nodes is
connected by a path

 A connected graph with no
loop is called tree

 A weighted graph, is a
graph for which a value is
associated to each arc

undirect direct

connected disconnected

tree

weighted

1

2

4

1

5

6
2

1

1

Example: Towers of Hanoi*

3
2
1

A B C

3
2

A B C

3
2

A B C

1 1

* A partial tree search space representation

3

A B C

1 2 3
2

A B C

1

…

3

A B C

1
2

A B C

1
2 3

3

A B C

1
2

…
…

3

A B C

1 2
…

3

A B C

1
2 3

A B C

1
2

… …

… … … …

These nodes

are equals

Example: Towers of Hanoi*

* A complete direct graph representation

[http://en.wikipedia.org/wiki/Tower_of_Hanoi]

Search Methods

 A search method is defined by picking the order of node
expansion

 Strategies are evaluated along the following dimensions:
 completeness: does it always find a solution if one exists?

 time complexity: number of nodes generated

 space complexity: maximum number of nodes in memory

 optimality: does it always find the shortest path solution?

 Time and space complexity are measured in terms of
 b: maximum branching factor of the search tree

 d: depth of the shortest path solution

 m: maximum depth of the state space (may be ∞)

Search Methods

 Uninformed techniques

 Systematically search complete graph, unguided

 Also known as brute force, naïve, or blind

 Informed methods

Use problem specific information to guide search

in promising directions

Brute force approach to explore search

space

UNINFORMED SEARCH

Uninformed Search

 A class of general purpose algorithms that operates in a brute force way

 The search space is explored without leveraging on any information on the
problem

 Also called blind search, or naïve search

 Since the methods are generic they are intrinsically inefficient

 E.g. Random Search

 This method selects randomly a new state from the current one

 If the goal state is reached, the search terminates

 Otherwise the methods randomly select an other operator to move to the next
state

 Prominent methods:

 Depth-First Search

 Breadth-First Search

 Uniform-Cost Search

Depth-First Search

 Depth-First Search (DFS) begins at the root node and exhaustively search each
branch to it maximum depth till a solution is found

 The successor node is selected going in depth using from right to left (w.r.t. graph
representing the search space)

 If greatest depth is reach with not solution, we backtrack till we find an unexplored
branch to follow

 DFS is not complete

 If cycles are presented in the graph, DFS will follow these cycles indefinitively

 If there are no cycles, the algorithm is complete

 Cycles effects can be limited by imposing a maximal depth of search (still the algorithm is
incomplete)

 DFS is not optimal

 The first solution is found and not the shortest path to a solution

 The algorithm can be implemented with a Last In First Out (LIFO) stack or recursion

Depth-First Search: Algorithm

List open, closed, successors={};

Node root_node, current_node;

insert-first(root_node,open)

while not-empty(open);

 current_node= remove-first(open);

 insert-first (current_node,closed);

 if (goal(current_node)) return current_node;

 else

 successors=successorsOf(current_node);

 for(x in successors)

 if(not-in(x,closed)) insert-first(x,open);

 endIf

endWhile

N.B.= this version is not saving the path for simplicity

Depth-First Search: Example
S

A B

S B

S A D F

F

1

2
3

4
5

6

A C D F

open={S} closed ={}

0. Visit S: open={A,B}, closed={S}

1.Visit A: open={S,B,F,B}, closed={A,S}

2.Visit S: open={B,F,B}, closed={S,A,S}

3.Visit B: open={S,A,F,D,F,B}, closed={B,S,A,S}

4.Visit S: open={A,F,D,F,B}, closed={S,B,S,A,S}

5.Visit A: open={F,D,F,B}, closed={A,S,B,S,A,S}

6.Visit F: GOAL Reached!

Depth-First Search: Example
S

A B

S B

S A D F

F

Result is: S->A->B->F

A C D F

Depth-First Search: Complexity
 Time Complexity

 assume (worst case) that there
is 1 goal leaf at the RHS

 so DFS will expand all nodes

 =1 + b + b2+ + bm

 = O (bm)

 where m is the max depth of the
tree

 Space Complexity
 how many nodes can be in the

queue (worst-case)?

 at each depth l < d we have b-1
nodes

 at depth m we have b nodes

 total = (d-1)*(b-1) + b = O(bm)

d=0

d=1

m=d=2

G

d=0

d=1

d=2

d=3

m=d=4

Breadth-First Search

 Breadth-First Search (BFS) begins at the root
node and explore level-wise al the branches

 BFS is complete
 If there is a solution, BFS will found it

 BFS is optimal
 The solution found is guaranteed to be the shortest

path possible

 The algorithm can be implemented with a First In
First Out (FIFO) stack

Breadth-First Search: Algorithm

List open, closed, successors={};

Node root_node, current_node;

insert-last(root_node,open)

while not-empty(open);

 current_node=remove-first(open);

 insert-last(current_node,closed);

 if (goal(current_node)) return current_node;

 else

 successors=successorsOf(current_node);

 for(x in successors)

 if(not-in(x,closed)) insert-last(x,open);

 endIf

endWhile

N.B.= this version is not saving the path for simplicity

Breadth-First Search: Example
S

A B

S B

S A D F

F

1

2

3

4 5

 open = {S}, closed={}

0. Visit S: open = {A,B}, closed={S}

1. Visit A: open={B,S,B,F}, closed={S,A}

2. Visit B: open={S,B,F,F,A,C,D}, closed={S,A,B}

3. Visit S: open={B,F,F,A,C,D}, closed={S,A,B,S}

4. Visit B: open={F,F,A,C,D,S,A,C,D},

closed={S,A,B,S,B}

5. Visit F: Goal Found!

A C D F

Breadth-First Search: Example
S

A B

S B

S A D F

F

Result is: S->A->F

A C D F

Breadth-First Search: Complexity

 Time complexity is the same magnitude as DFS

 O (bm)

 where m is the depth of the solution

 Space Complexity

 how many nodes can be in the queue (worst-case)?

 assume (worst case) that there is 1 goal leaf at the
RHS

 so BFS will store all nodes

 =1 + b + b2+ + bm
 = O (bm)

1

3

7

15 14 13 12 11 10 9 8

4 5 6

2

d=0

d=1

d=2

d=3

d=4 G

Further Uninformed Search

Strategies

 Depth-limited search (DLS): Impose a cut-off (e.g. n
for searching a path of length n-1), expand nodes with
max. depth first until cut-off depth is reached (LIFO
strategy, since it is a variation of depth-first search).

 Bidirectional search (BIDI): forward search from initial
state & backward search from goal state, stop when
the two searches meet. Average effort O(bd/2) if
testing whether the search fronts intersect has
constant effort

 In AI, the problem graph is typically not known. If the
graph is known, to find all optimal paths in a graph
with labelled arcs, standard graph algorithms can be
used

Using knowledge on the search space to

reduce search costs

INFORMED SEARCH

Informed Search

 Blind search methods take O(bm) in the worst case

 May make blind search algorithms prohibitively slow

where d is large

 How can we reduce the running time?

 Use problem-specific knowledge to pick which states are better

candidates

Informed Search

 Also called heuristic search

 In a heuristic search each state is assigned a “heuristic

value” (h-value) that the search uses in selecting the

“best” next step

 A heuristic is an operationally-effective nugget of

information on how to direct search in a problem space

 Heuristics are only approximately correct

Informed Search: Prominent

methods
 Best-First Search

 A*

 Hill Climbing

Cost and Cost Estimation

f(n)=g(n)+h(n)

 g(n) the cost (so far) to reach the node n

 h(n) estimated cost to get from the node to the

goal

 f(n) estimated total cost of path through n to

goal

Informed Search: Best-First Search

 Special case of breadth-first search

 Uses h(n) = heuristic function as its evaluation function

 Ignores cost so far to get to that node (g(n))

 Expand the node that appears closest to goal

 Best First Search is complete

 Best First Search is not optimal
 A solution can be found in a longer path (higher h(n) with a lower

g(n) value)

 Special cases:
 uniform cost search: f(n) = g(n) = path to n

 A* search

31

Best-First Search: Algorithm

List open, closed, successors={};

Node root_node, current_node;

insert-last(root_node,open)

while not-empty(open);

 current_node=remove-first (open);

 insert-last(current_node,closed);

 if (goal(current_node)) return current_node;

 else

 successors=estimationOrderedSuccessorsOf(current_node);

 for(x in successors)

 if(not-in(x,closed)) insert-last(x,open);

 endIf

endWhile

32

N.B.= this version is not saving the path for simplicity

returns the list of direct

descendants of the

current node in shortest

cost order

Best-First Search: Example

33

S

A B

S B

S A D F

F

1

2

3

 open = {S}, closed={}

0. Visit S: open = {A,B}, closed={S}

1. Visit A: open={B,F,B,S}, closed={S,A}

2. Visit B: open={F,B,S,F,A,C,D}, closed={S,A,B}

3. Visit F: Goal Found!

A C D F

h=1 h=1

h=2
h=2 h=2 h=2

h=2

h=2 h=2

In this case we estimate the cost as the distance from the root node (in term of nodes)

Best-First Search: Example

34

S

A B

S B

S A D F

F A C D F

Result is: S->A->F!

If we consider real costs, optimal solution is:

S->B->F

h=1, w=2 h=1, w=1

h=2, w=4
h=2 h=2 h=2

h=2, w=7

h=2 h=2

A*

 Derived from Best-First Search

 Uses both g(n) and h(n)

 A* is optimal

 A* is complete

A* : Algorithm

List open, closed, successors={};

Node root_node, current_node, goal;

insert-back(root_node,open)

while not-empty(open);

 current_node=remove-front(open);

 insert-back(current_node,closed);

 if (current_node==goal) return current_node;

 else

 successors=totalEstOrderedSuccessorsOf(current_node);

 for(x in successors)

 if(not-in(x,closed)) insert-back(x,open);

 endIf

endWhile

36

N.B.= this version is not saving the path for simplicity

returns the list of direct

descendants of the

current node in shortest

total estimation order

A* : Example

37

S

A B

S B

S A D F

F

1

2

3

 open = {S}, closed={}

0. Visit S: open = {B,A}, closed={S}

1. Visit B: open={A,C,A,F,D}, closed={S,B}

2. Visit A: open={C,A,F,D,B,S,F}, closed={S,B,A}

3. Visit C: open={A,F,D,B,S,F}, closed={S,B,A,C}

4. Visit A: open={F,D,B,S,F}, closed={S,B,A,C,A}

5. Visit F: Goal Found!

A C D F

h=2,

w=1

g=3

h=2,

w=2,

g=4

In this case we estimate the cost as the distance from the root node (in term of nodes)

h=1, w=2, g=2 h=1, w=1, g=1

h=2, w=4, g=5 h=2, w=7, g=9

h=2,

w=1

g=2

h=2

w=3

g=4

h=2, w=4, g=5

4 5

A* : Example

38

S

A B

S B

S A D F

F A C D F

h=2,

w=1

g=3

h=2,

w=2,

g=4

h=1, w=2, g=2 h=1, w=1, g=1

h=2, w=4, g=5 h=2, w=7, g=9

h=2,

w=1

g=2

h=2

w=3

g=4

h=2, w=4, g=5

Result is: S->B->F!

Hill Climbing

 Special case of depth-first search

 Uses h(n) = heuristic function as its evaluation
function

 Ignores cost so far to get to that node (g(n))

 Expand the node that appears closest to goal

 Hill Climbing is not complete

 Unless we introduce backtracking

 Hill Climbing is not optimal

 Solution found is a local optimum

Hill Climbing: Algorithm

List successors={}; Node root_node, current_node, nextNode;

current_node=root_node

while (current_node!=null)

 if (goal(current_node)) return current_node;

 else

 successors=successorsOf(current_node);

 nextEval = -∞; nextNode=null;

 for(x in successors)

 if(eval(x)> nextEval)

 nexEval=eval(x);

 nextNode=x;

 current_node=nextNode,

 endIf

endWhile

40

N.B.= this version is not using backtracking

Hill Climbing: Example

41

S

A B

S B

S A D F

F

1

2

3 0. current_node=S, successors (A=1,B=1)

1. current_node=A, successors (B=2,F=2,S=2)

2. current_node=B, successors (F=1,….)

3. current_node=F: Goal Found!

A C D F

h=1 h=1

h=2
h=2 h=2 h=2

h=2

h=2 h=3

In this case we estimate the cost as the distance from the root node (in term of nodes)

h=1

Hill Climbing: Example

42

S

A B

S B

S A D F

F A C D F

h=1 h=1

h=2
h=2 h=2 h=2

h=2

h=2 h=3

h=1

Result is: S->A->B->F!

Not optimal, more if at step 1 h(S)=2 we would

have completed without funding a solution

Informed Search Algorithm

Comparison

Algorithm Time Space Optimal Complete Derivative

Best First
Search

O(bm) O(bm) No Yes BFS

Hill Climbing O() O(b) No No

A* O(2N) O(bd) Yes Yes Best First
Search

43

b, branching factor

d, tree depth of the solution

m, maximum tree depth

ILLUSTRATION BY A LARGER

EXAMPLE

Route Search

 Start point:
Milan

 End point:
Innsbruck

 Search space:
Cities

Nodes: Cities

 Arcs: Roads

 Let’s find a
possible route!

Graph Representation

 We start from the
root node, and
pick the leaves

 The same apply
to each leaves

 But we do not
reconsider
already used
arcs

 The first node
picked is the first
node on the right

Innsbruck (Goal)

Milan (Root)

Piacenza

Verona

Bolzano

Trento

Merano

Landeck

Sondrio

Bergamo

Brescia

Lecco
Como

Lugano

Chiavenna

Feldkirck

20

Depth-First Search

Innsbruck

Milan

Piacenza

Verona

Bolzano

Trento

Merano

Landeck

Brescia

Lecco Como Bergamo

Trento

Innsbruck

Innsbruck

Bolzano

Merano

Landeck

Innsbruck

Innsbruck

Verona

Bolzano

Trento

Merano

Landeck

Brescia

Trento

Innsbruck

Innsbruck

Bolzano

Merano

Landeck

Innsbruck

N.B.: by building the tree, we are exploring the search space!

1

2

3

4

5

According to Google Maps:
464 km – 4 hours 37 mins

Breadth-First search

Innsbruck

Milan

Piacenza

Verona

Bolzano

Trento

Merano

Landeck

Sondrio Brescia

Lecco Como

Lugano Chiavenna

Feld.

Bergamo

Trento

Innsbruck

Innsbruck

Bolzano

Innsbruck

Verona

Bolzano

Trento

Merano

Landeck

Brescia

Trento

Innsbruck

Innsbruck

Bolzano

N.B.: by building the tree, we are exploring the search space!

1
2

3

4

5 6 7 8 9

Lecco

10

11 12
13

14

Landeck

Innsbruck

15

Lugano

16

Merano

17 20 21

Sondrio Chi. Chi.

18

22

19

23 24 25

26

According to Google Maps:
358 km – 5 hours 18 mins

Depth-First Search vs Breadth-

First search

 Distance
 DFS: 464 km

 BFS: 358 km

 Q1: Can we use an algorithm to optimize according to distance?

 Time
 DFS: 4 hours 37 mins

 BFS: 5 hours 18 mins

 Q2: Can we use an algorithm to optimize according to time?

 Search space:
 DFS: 5 expansions

 BFS: 26 expansions

 Not very relevant… depends a lot on how you pick the order of node expansion, never the
less BFS is usually more expensive

 To solve Q1 and Q2 we can apply for example and Best-First Search
 Q1: the heuristic maybe the air distance between cities

 Q2: the heuristic maybe the air distance between cities x average speed (e.g. 90km/h)

Graph Representation

with approximate distance

Innsbruck (Goal)

Milan (Root)

Piacenza

Verona

Bolzano

Trento

Merano

Landeck

Sondrio

Bergamo

Brescia

Lecco
Como

Lugano

Chiavenna

Feldkirck

60

50
45

55

20

180

40

140

63

42

135

100

25

90

55

90
80

60

70

45

70

25

60

Best-First search

Innsbruck

Milan

Piacenza

Verona

Bolzano

Trento

Merano

Landeck

Sondrio Brescia

Lecco Como

Lugano Chiavenna

Feld.

Bergamo

Trento

Innsbruck

Innsbruck

Bolzano

Innsbruck

Verona

Bolzano

Trento

Merano

Landeck

Brescia

Trento

Innsbruck

Innsbruck

Bolzano

N.B.: by building the tree, we are exploring the search space!

1

Lecco

Landeck

Innsbruck

Lugano Merano Sondrio Chi. Chi.

According to Google Maps:
358 km – 5 hours 18 mins
And this is really the shortest way!

H=60 H=55 H=50 H=45

H=65 H=70 H=130 H=100
H=110 H=92

4 2 3

5 6 7 8 10 11

H=190 H=220

H=275 H=270

H=160 H=190

H=240 H=245

H=250

H=313

H=150 H=227 H=105 H=245 H=130 H=142

9 12 13 14 15 16
17 18 19 21

20 21

22

29

EXTENSIONS

Variants to presented algorithms

 Combine Depth First Search and Breadth First Search, by

performing Depth Limited Search with increased depths until a goal

is found

 Enrich Hill Climbing with random restart to hinder the local

maximum and foothill problems

 Stochastic Beam Search: select w nodes randomly; nodes with

higher values have a higher probability of selection

 Genetic Algorithms: generate nodes like in stochastic beam search,

but from two parents rather than from one

SUMMARY

Summary

 Uninformed Search

 If the branching factor is small, BFS is the best
solution

 If the tree is depth IDS is a good choice

 Informed Search

 Heuristic function selection determines the efficiency
of the algorithm

 If actual cost is very expensive to be computed, then
Best First Search is a good solution

 Hill climbing tends to stack in local optimal solutions

