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Motivation 

 One of the major goals of AI is to help humans in solving complex tasks 

 How can I fill my container with pallets? 

 Which is the shortest way from Milan to Innsbruck? 

 Which is the fastest way from Milan to Innsbruck? 

 How can I optimize the load of my freight to maximize my revenue? 

 How can I solve my Sudoku game? 

 What is the sequence of actions I should apply to win a game? 

 Sometimes finding a solution is not enough, you want the optimal solution 
according to some “cost” criteria 

 All the example presented above involve looking for a plan 

 A plan that can be defined as the set of operations to be performed of an 
initial state, to reach a final state that is considered the goal state 

 Thus we need efficient techniques to search for paths, or sequences of 
actions, that can enable us to reach the goal state, i.e. to find a plan 

 Such techniques are commonly called Search Methods 

 

 



Examples of Problems: Towers of 

Hanoi 

 3 pegs A, B, C  

 3 discs represented as natural 
numbers (1, 2, 3) which 
correspond to the size of the 
discs 

 The three discs can be 
arbitrarily distributed over the 
three pegs, such that the 
following constraint holds: 

di is on top of dj → di < dj 

 Initial status: ((123)()()) 

 Goal status: (()()(123)) 

3 

2 

1 

A B C 

Operators: 

Move disk to peg 

 

Applying: Move 1 to C (1 → C) 

to the initial state ((123)()()) 

a new state is reached 

((23)()(1)) 

 

Cycles may appear in the 

solution! 



Examples of Problems: 

Blocksworld 

 Objects: blocks  

 Attributes (1-ary 
relations): cleartop(x), 
ontable(x)  

 Relations: on(x,y)  

 Operators: puttable(x) 
where x must be 
cleartop; put(x,y), where 
x and y must be 
cleartop 

E 

A 

B C 

D 

Goal State 

E A B C 

D 

Initial State 

• Initial state: 
– ontable(E), cleartop(E)  

– ontable(A), cleartop(A) 

– ontable(B), cleartop(B) 

– ontable(C) 

– on(D,C), cleartop (D) 

• Applying the move put(E,A): 
– on(E,A), cleartop(E)  

– ontable(A) 

– ontable(B), cleartop(B) 

– ontable(C) 

– on(D,C), cleartop (D) 

 

 



Search Methods 

TECHNICAL SOLUTION 



Search Space Representation 

 Representing the search 
space is the first step to 
enable the problem resolution 

 Search space is mostly 
represented through graphs 

 A graph is a finite set of 
nodes that are connected by 
arcs 

 A loop may exist in a graph, 
where an arc lead back to the 
original node 

 In general, such a graph is 
not explicitly given 

 Search space is constructed 
during search 

Loop 
Node 

Arc 



Search Space Representation 

 A graph is undirected if 
arcs do not imply a 
direction, direct otherwise 

 

 A graph is connected if 
every pair of nodes is 
connected by a path 

 

 A connected graph with no 
loop is called tree 

 

 A weighted graph, is a 
graph for which a value is 
associated to each arc 

undirect direct 

connected disconnected 

tree 

weighted 
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1 
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Example: Towers of Hanoi* 
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* A partial tree search space representation 
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Example: Towers of Hanoi* 

* A complete direct graph representation 

[http://en.wikipedia.org/wiki/Tower_of_Hanoi] 



Search Methods 

 A search method is defined by picking the order of node 
expansion 

 

 Strategies are evaluated along the following dimensions: 
 completeness: does it always find a solution if one exists? 

 time complexity: number of nodes generated 

 space complexity: maximum number of nodes in memory 

 optimality: does it always find the shortest path solution? 

 

 Time and space complexity are measured in terms of  
 b: maximum branching factor of the search tree 

 d: depth of the shortest path solution 

 m: maximum depth of the state space (may be ∞) 



Search Methods 

 Uninformed techniques 

 Systematically search complete graph, unguided 

 Also known as brute force, naïve, or blind 

 

 Informed methods 

Use problem specific information to guide search 

in promising directions 

 

 



Brute force approach to explore search 

space 

UNINFORMED SEARCH 



Uninformed Search 

 A class of general purpose algorithms that operates in a brute force way 

 The search space is explored without leveraging on any information on the 
problem 

 Also called blind search, or naïve search 

 Since the methods are generic they are intrinsically inefficient 

 

 E.g. Random Search 

 This method selects randomly a new state from the current one 

 If the goal state is reached, the search terminates 

 Otherwise the methods randomly select an other operator to move to the next 
state 

 

 Prominent methods: 

 Depth-First Search 

 Breadth-First Search 

 Uniform-Cost Search 

 



Depth-First Search 

 Depth-First Search (DFS) begins at the root node and exhaustively search each 
branch to it maximum depth till a solution is found 

 The successor node is selected going in depth using from right to left (w.r.t. graph 
representing the search space) 

 If greatest depth is reach with not solution, we backtrack till we find an unexplored 
branch to follow 

 

 DFS is not complete 

 If cycles are presented in the graph, DFS will follow these cycles indefinitively 

 If there are no cycles, the algorithm is complete 

 Cycles effects can be limited by imposing a maximal depth of search (still the algorithm is 
incomplete) 

 DFS is not optimal 

 The first solution is found and not the shortest path to a solution 

 

 The algorithm can be implemented with a Last In First Out (LIFO) stack or recursion 



Depth-First Search: Algorithm 

List open, closed, successors={}; 

Node root_node, current_node; 

insert-first(root_node,open) 

 

while not-empty(open); 

 current_node= remove-first(open); 

 insert-first (current_node,closed); 

 if (goal(current_node)) return current_node; 

 else 

  successors=successorsOf(current_node); 

  for(x in successors) 

   if(not-in(x,closed)) insert-first(x,open); 

 endIf 

endWhile 

N.B.= this version is not saving the path for simplicity 



Depth-First Search: Example 
S 

A B 

S B 

S A D F 

F 

1 

2 
3 

4 
5 

6 

A C D F 

open={S} closed ={} 

 

0. Visit S: open={A,B}, closed={S} 

1.Visit A: open={S,B,F,B}, closed={A,S} 

2.Visit S: open={B,F,B}, closed={S,A,S} 

3.Visit B: open={S,A,F,D,F,B}, closed={B,S,A,S} 

4.Visit S: open={A,F,D,F,B}, closed={S,B,S,A,S} 

5.Visit A: open={F,D,F,B}, closed={A,S,B,S,A,S} 

6.Visit F: GOAL Reached! 

 

 



Depth-First Search: Example 
S 

A B 

S B 

S A D F 

F 

Result is: S->A->B->F 

A C D F 



Depth-First Search: Complexity 
 Time Complexity 

 assume (worst case) that there 
is 1 goal leaf at the RHS 

 so DFS will expand all nodes 
 
    =1 + b + b2+    ......... + bm

    
      = O (bm) 

 where m is the max depth of the 
tree 
 
 

 Space Complexity 
 how many nodes can be in the 

queue (worst-case)? 

 at each depth l < d we have b-1 
nodes 

 at depth m we have b nodes 

 total = (d-1)*(b-1) + b = O(bm) 

d=0 

d=1 

m=d=2 

G 

  

d=0 

d=1 

d=2 

 

d=3 

 

m=d=4 



Breadth-First Search 

 Breadth-First Search (BFS) begins at the root 
node and explore level-wise al the branches 

 

 BFS is complete 
 If there is a solution, BFS will found it 

 BFS is optimal 
 The solution found is guaranteed to be the shortest 

path possible 

 

 The algorithm can be implemented with a First In 
First Out (FIFO) stack 



Breadth-First Search: Algorithm 

List open, closed, successors={}; 

Node root_node, current_node; 

insert-last(root_node,open) 

 

while not-empty(open); 

 current_node=remove-first(open); 

 insert-last(current_node,closed); 

 if (goal(current_node)) return current_node; 

 else 

  successors=successorsOf(current_node); 

  for(x in successors) 

   if(not-in(x,closed)) insert-last(x,open); 

 endIf 

endWhile 

N.B.= this version is not saving the path for simplicity 



Breadth-First Search: Example 
S 

A B 

S B 

S A D F 

F 

1 

2 

3 

4 5 

 open = {S}, closed={} 

0. Visit S: open = {A,B}, closed={S} 

1. Visit A: open={B,S,B,F}, closed={S,A} 

2. Visit B: open={S,B,F,F,A,C,D}, closed={S,A,B} 

3. Visit S: open={B,F,F,A,C,D}, closed={S,A,B,S} 

4. Visit B: open={F,F,A,C,D,S,A,C,D}, 

closed={S,A,B,S,B} 

5. Visit F: Goal Found! 

 

A C D F 



Breadth-First Search: Example 
S 

A B 

S B 

S A D F 

F 

Result is: S->A->F 

A C D F 



Breadth-First Search: Complexity 

 Time complexity is the same magnitude as DFS 

 O (bm) 

 where m is the depth of the solution 

 Space Complexity 

 how many nodes can be in the queue (worst-case)? 

 assume (worst case) that there is 1 goal leaf at the 
RHS 

 so BFS will store all nodes 
 
    =1 + b + b2+    ......... + bm    
      = O (bm) 
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Further Uninformed Search 

Strategies 

 Depth-limited search (DLS): Impose a cut-off (e.g. n 
for searching a path of length n-1), expand nodes with 
max. depth first until cut-off depth is reached (LIFO 
strategy, since it is a variation of depth-first search).  

 Bidirectional search (BIDI): forward search from initial 
state & backward search from goal state, stop when 
the two searches meet. Average effort  O(bd/2) if 
testing whether the search fronts intersect has 
constant effort  

 In AI, the problem graph is typically not known. If the 
graph is known, to find all optimal paths in a graph 
with labelled arcs, standard graph algorithms can be 
used 



Using knowledge on the search space to 

reduce search costs 

INFORMED SEARCH 



Informed Search 

 Blind search methods take O(bm) in the worst case 

 

 May make blind search algorithms prohibitively slow 

where d is large 

 

 How can we reduce the running time? 

 Use problem-specific knowledge to pick which states are better 

candidates 



Informed Search 

 Also called heuristic search 

 

 In a heuristic search each state is assigned a “heuristic 

value” (h-value) that the search uses in selecting the 

“best” next step 

 

 A heuristic is an operationally-effective nugget of 

information on how to direct search in a problem space 

 

 Heuristics are only approximately correct 



Informed Search: Prominent 

methods 
 Best-First Search 

 

 A* 

 

 Hill Climbing 

 



Cost and Cost Estimation 

f(n)=g(n)+h(n) 
 

 g(n) the cost (so far) to reach the node n 

 h(n) estimated cost to get from the node to the 

goal 

 f(n) estimated total cost of path through n to 

goal 



Informed Search: Best-First Search 

 Special case of breadth-first search 

 Uses h(n) = heuristic function as its evaluation function 

 Ignores cost so far to get to that node (g(n)) 

 Expand the node that appears closest to goal 

 

 Best First Search is complete 

 Best First Search is not optimal 
 A solution can be found in a longer path (higher h(n) with a lower 

g(n) value) 
 

 Special cases: 
 uniform cost search: f(n) = g(n) = path to n 

 A* search 

 

 

31 



Best-First Search: Algorithm 

List open, closed, successors={}; 

Node root_node, current_node; 

insert-last(root_node,open) 

 

while not-empty(open); 

 current_node=remove-first (open); 

 insert-last(current_node,closed); 

 if (goal(current_node)) return current_node; 

 else 

  successors=estimationOrderedSuccessorsOf(current_node); 

  for(x in successors) 

   if(not-in(x,closed)) insert-last(x,open); 

 endIf 

endWhile 

32 

N.B.= this version is not saving the path for simplicity 

returns the list of direct 

descendants of the 

current node in shortest 

cost order 



Best-First Search: Example 

33 

S 

A B 

S B 

S A D F 

F 

1 

2 

3 

 open = {S}, closed={} 

0. Visit S: open = {A,B}, closed={S} 

1. Visit A: open={B,F,B,S}, closed={S,A} 

2. Visit B: open={F,B,S,F,A,C,D}, closed={S,A,B} 

3. Visit F: Goal Found! 

 

A C D F 

h=1 h=1 

h=2 
h=2 h=2 h=2 

h=2 

h=2 h=2 

In this case we estimate the cost as the distance from the root node (in term of nodes) 



Best-First Search: Example 
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S 

A B 

S B 

S A D F 

F A C D F 

Result is: S->A->F! 

 

If we consider real costs, optimal solution is: 

S->B->F 

h=1, w=2 h=1, w=1 

h=2, w=4 
h=2 h=2 h=2 

h=2, w=7 

h=2 h=2 



A* 

 Derived from Best-First Search 

 Uses both g(n) and h(n) 

 A* is optimal 

 A* is complete 



A* : Algorithm 

List open, closed, successors={}; 

Node root_node, current_node, goal; 

insert-back(root_node,open) 

 

while not-empty(open); 

 current_node=remove-front(open); 

 insert-back(current_node,closed); 

 if (current_node==goal) return current_node; 

 else 

  successors=totalEstOrderedSuccessorsOf(current_node); 

  for(x in successors) 

   if(not-in(x,closed)) insert-back(x,open); 

 endIf 

endWhile 

36 

N.B.= this version is not saving the path for simplicity 

returns the list of direct 

descendants of the 

current node in shortest 

total estimation order  



A* : Example 
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S 

A B 

S B 

S A D F 

F 

1 

2 

3 

 open = {S}, closed={} 

0. Visit S: open = {B,A}, closed={S} 

1. Visit B: open={A,C,A,F,D}, closed={S,B} 

2. Visit A: open={C,A,F,D,B,S,F}, closed={S,B,A} 

3. Visit C: open={A,F,D,B,S,F}, closed={S,B,A,C} 

4. Visit A: open={F,D,B,S,F}, closed={S,B,A,C,A} 

5. Visit F: Goal Found! 

 

A C D F 

h=2, 

w=1 

g=3 

h=2, 

w=2, 

g=4 

In this case we estimate the cost as the distance from the root node (in term of nodes) 

h=1, w=2, g=2 h=1, w=1, g=1 

h=2, w=4, g=5 h=2, w=7, g=9 

h=2, 

w=1 

g=2 

h=2 

w=3 

g=4 

h=2, w=4, g=5 

4 5 



A* : Example 
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S 

A B 

S B 

S A D F 

F A C D F 

h=2, 

w=1 

g=3 

h=2, 

w=2, 

g=4 

h=1, w=2, g=2 h=1, w=1, g=1 

h=2, w=4, g=5 h=2, w=7, g=9 

h=2, 

w=1 

g=2 

h=2 

w=3 

g=4 

h=2, w=4, g=5 

Result is: S->B->F! 



Hill Climbing 

 Special case of depth-first search 

 Uses h(n) = heuristic function as its evaluation 
function 

 Ignores cost so far to get to that node (g(n)) 

 Expand the node that appears closest to goal 

 

 Hill Climbing is not complete 

 Unless we introduce backtracking 

 Hill Climbing is not optimal 

 Solution found is a local optimum 
 



Hill Climbing: Algorithm 

List successors={}; Node root_node, current_node, nextNode; 

 

current_node=root_node 

while (current_node!=null) 

 if (goal(current_node)) return current_node; 

 else 

  successors=successorsOf(current_node); 

  nextEval = -∞; nextNode=null; 

  for(x in successors) 

   if(eval(x)> nextEval)  

    nexEval=eval(x); 

    nextNode=x; 

  current_node=nextNode, 

 endIf 

endWhile 

40 

N.B.= this version is not using backtracking 



Hill Climbing: Example 

41 

S 

A B 

S B 

S A D F 

F 

1 

2 

3 0. current_node=S, successors (A=1,B=1) 

1. current_node=A, successors (B=2,F=2,S=2) 

2. current_node=B, successors (F=1,….) 

3. current_node=F: Goal Found! 

 

A C D F 

h=1 h=1 

h=2 
h=2 h=2 h=2 

h=2 

h=2 h=3 

In this case we estimate the cost as the distance from the root node (in term of nodes) 

h=1 



Hill Climbing: Example 
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S 

A B 

S B 

S A D F 

F A C D F 

h=1 h=1 

h=2 
h=2 h=2 h=2 

h=2 

h=2 h=3 

h=1 

Result is: S->A->B->F! 

 

Not optimal, more if at step 1 h(S)=2 we would 

have completed without funding a solution 



Informed Search Algorithm 

Comparison 

Algorithm Time Space Optimal Complete Derivative 

Best First 
Search 

O(bm) O(bm) No Yes BFS 

Hill Climbing O() O(b) No No 

A* O(2N) O(bd) Yes Yes Best First 
Search 

43 

b, branching factor 

d, tree depth of the solution 

m, maximum tree depth 



ILLUSTRATION BY A LARGER 

EXAMPLE 



Route Search 

 Start point: 
Milan 

 End point: 
Innsbruck 

 Search space: 
Cities 

Nodes: Cities 

 Arcs: Roads 

 Let’s find a 
possible route! 

 

 



Graph Representation 

 We start from the 
root node, and 
pick the leaves 

 

 The same apply 
to each leaves 

 But we do not 
reconsider 
already used 
arcs 

 

 The first node 
picked is the first 
node on the right 

Innsbruck (Goal) 

Milan (Root) 

Piacenza 

Verona 

Bolzano 

Trento 

Merano 

Landeck 

Sondrio 

Bergamo 

Brescia 

Lecco 
Como 

Lugano 

Chiavenna 

Feldkirck 

20 



Depth-First Search 

Innsbruck 

Milan 

Piacenza 

Verona 

Bolzano 

Trento 

Merano 

Landeck 

Brescia 

Lecco Como Bergamo 

Trento 

Innsbruck 

Innsbruck 

Bolzano 

Merano 

Landeck 

Innsbruck 

Innsbruck 

Verona 

Bolzano 

Trento 

Merano 

Landeck 

Brescia 

Trento 

Innsbruck 

Innsbruck 

Bolzano 

Merano 

Landeck 

Innsbruck 

N.B.: by building the tree, we are exploring the search space! 

1 

2 

3 

4 

5 

According to Google Maps: 
464 km – 4 hours 37 mins 



Breadth-First search 

Innsbruck 

Milan 

Piacenza 

Verona 

Bolzano 

Trento 

Merano 

Landeck 

Sondrio Brescia 

Lecco Como 

Lugano Chiavenna 

Feld. 

Bergamo 

Trento 

Innsbruck 

Innsbruck 

Bolzano 

Innsbruck 

Verona 

Bolzano 

Trento 

Merano 

Landeck 

Brescia 

Trento 

Innsbruck 

Innsbruck 

Bolzano 

N.B.: by building the tree, we are exploring the search space! 

1 
2 

3 

4 

5 6 7 8 9 

Lecco 

10 

11 12 
13 

14 

Landeck 

Innsbruck 

15 

Lugano 

16 

Merano 

17 20 21 

Sondrio Chi. Chi. 

18 

22 

19 

23 24 25 

26 

According to Google Maps: 
358 km – 5 hours 18 mins 



Depth-First Search vs Breadth-

First search  

 Distance 
 DFS: 464 km 

 BFS: 358 km 

 Q1: Can we use an algorithm to optimize according to distance? 

 Time 
 DFS: 4 hours 37 mins 

 BFS: 5 hours 18 mins 

 Q2: Can we use an algorithm to optimize according to time? 

 Search space: 
 DFS: 5 expansions 

 BFS: 26 expansions 

 Not very relevant… depends a lot on how you pick the order of node expansion, never the 
less BFS is usually more expensive 

 

 To solve Q1 and Q2 we can apply for example and Best-First Search 
 Q1: the heuristic maybe the air distance between cities 

 Q2: the heuristic maybe the air distance between cities x average speed (e.g. 90km/h) 

 

 



Graph Representation 

with approximate distance 

Innsbruck (Goal) 

Milan (Root) 

Piacenza 

Verona 

Bolzano 

Trento 

Merano 

Landeck 

Sondrio 

Bergamo 

Brescia 

Lecco 
Como 

Lugano 

Chiavenna 

Feldkirck 

60 

50 
45 

55 

20 

180 

40 

140 

63 

42 

135 

100 

25 

90 

55 

90 
80 

60 

70 

45 

70 

25 

60 



Best-First search 

Innsbruck 

Milan 

Piacenza 

Verona 

Bolzano 

Trento 

Merano 

Landeck 

Sondrio Brescia 

Lecco Como 

Lugano Chiavenna 

Feld. 

Bergamo 

Trento 

Innsbruck 

Innsbruck 

Bolzano 

Innsbruck 

Verona 

Bolzano 

Trento 

Merano 

Landeck 

Brescia 

Trento 

Innsbruck 

Innsbruck 

Bolzano 

N.B.: by building the tree, we are exploring the search space! 

1 

Lecco 

Landeck 

Innsbruck 

Lugano Merano Sondrio Chi. Chi. 

According to Google Maps: 
358 km – 5 hours 18 mins 
And this is really the shortest way! 

H=60 H=55 H=50 H=45 

H=65 H=70 H=130 H=100 
H=110 H=92 

4 2 3 

5 6 7 8 10 11 

H=190 H=220 

H=275 H=270 

H=160 H=190 

H=240 H=245 

H=250 

H=313 

H=150 H=227 H=105 H=245 H=130 H=142 

9 12 13 14 15 16 
17 18 19 21 

20 21 

22 

29 



EXTENSIONS 



Variants to presented algorithms 

 Combine Depth First Search and Breadth First Search, by 

performing Depth Limited Search with increased depths until a goal 

is found 

 Enrich Hill Climbing with random restart to hinder the local 

maximum and foothill problems 

 Stochastic Beam Search: select w nodes randomly; nodes with 

higher values have a higher probability of selection 

 Genetic Algorithms: generate nodes like in stochastic beam search, 

but from two parents rather than from one 



SUMMARY 



Summary 

 Uninformed Search 

 If the branching factor is small, BFS is the best 
solution 

 If the tree is depth IDS is a good choice 

 

 Informed Search 

 Heuristic function selection determines the efficiency 
of the algorithm 

 If actual cost is very expensive to be computed, then 
Best First Search is a good solution 

 Hill climbing tends to stack in local optimal solutions 

 

 


